What Do We Know about the Top Quark?

Brian Winer
The Ohio State University
DPF'96
11 Aug, 1996

Outline:

- Introduction
- Top Quark Production and Detection
- Properties
 - $-\sigma_{tar{t}}$ Measurements
 - $-M_{top}$ Measurements
 - $-V_{tb}$
 - Search for Rare Decays
- Top Prospects Before the LHC
- Summary

Introduction

- Top physics is less than three years old, so we want to learn as much as possible.
- Measurements of Standard Model Parameters like M_{Top} .

• Also, good place to look for extensions beyond the Standard Model.

A Short History

- 1977-1994: A collection of null results
- April, 1994: First Evidence
 - Phys. Rev. **D50**, 2966 (1994) CDF
 - -15 events on a background of 6.0
 - $-2.8 \sigma \text{ excess}$
 - $-M_{top} = 174 \pm 17 \; GeV/c^2$
 - $-\sigma_{t\bar{t}} = 13.9^{+6.1}_{-4.8} \ pb$
- February, 1995: Confirmation
 - PRL 74, 2626 (1995) CDF
 - $-4.8 \sigma \text{ excess}$
 - $-M_{top} = 176 \pm 8(stat) \pm 10(syst) \ GeV/c^2$
 - $-\sigma_{t\bar{t}} = 6.8^{+3.6}_{-2.4} \ pb$
 - $-\,\mathrm{PRL}\,\,74,\,2632\,\,(1995)\,\,\,\,\mathrm{D}\emptyset$
 - $-4.6 \sigma \text{ excess}$
 - $-M_{top} = 199^{+19}_{-21}(stat)^{+14}_{-21}(syst) \ GeV/c^2$
 - $-\sigma_{t\bar{t}}~=~6.4\pm2.2~pb$

Top Production at the Tevatron

Top quarks are predominantly produced in pairs by the processes $p\bar{p} \to t\bar{t}$:.

In Tevatron Run I, For both DØ and CDF:

- $\int Ldt$ exceeded 100 pb^{-1}
- over $5 \times 10^{12} \ p\bar{p}$ collisions
- ullet pprox 500 $tar{t}$ pairs produced.

$$rac{\sigma_{f tar t}}{\sigma_{f inel}} \sim {f 10^{-9}}, \qquad rac{\sigma_{f tar t}}{\sigma_{f W}} \sim {f 10^{-3}}$$

• Single top production through Wg fusion and W^* production is about 20% of this rate, and has not yet been observed.

Top Quark Decay Signatures

- Signature depends primarily on the decay of the W's
- Both W's Decay $W \to \ell \nu$ (Dilepton Channel)

Final State: $\ell^+ \nu \ell^- \nu b \bar{b}$ (ℓ : e or μ ; 5%)

• One W Decay $W \to \ell\nu$ (Lepton+Jets Channel)

Final State: $\ell^+ \nu \ q \bar{q}' \ b \bar{b}$ (ℓ : $e \text{ or } \mu; 30\%$)

• Channels with $W \to \tau$ or both W's decaying $W \to q\bar{q}'$ have much higher backgrounds.

Starting to use these channels.

Dilepton Channels

• Signature:

- Two isolated high P_T leptons (e, μ, τ)
- Missing Energy ($\cancel{\mathbb{E}}_{\mathrm{T}}$) from two ν 's.
- -2 or more jets

• Dominant Backgrounds:

- -WW
- $-Z \rightarrow \tau \tau$
- Fake leptons
- Drell Yan

• Features:

- Good Signal-to-background ratio but low statistics
- Not ideal for top mass determination (two ν 's)

Dilepton Event Summary

Sample	DØ	CDF
$e\mu$	3	7
Background	0.4 ± 0.1	0.76 ± 0.21
Expected Yield	1.7 ± 0.3	2.4 ± 0.2
$(M_{top}=175~{ m GeV/c^2})$		
ee or $\mu\mu$	2	2
Background	1.2 ± 0.4	1.23 ± 0.36
Expected Yield	1.4 ± 0.1	1.6 ± 0.2
$(M_{top}=175~{ m GeV/c^2})$		
e or $\mu + \tau$	2	4
Background	1.4 ± 0.5	1.96 ± 0.35
Expected Yield	1.4 ± 0.1	0.7 ± 0.1
$(M_{top} = 175 \text{ GeV/c}^2)$	(88 pb^{-1})	

Sample Selection Relies on:

- High E_t Leptons
- Jet Activity
- Missing Energy
- Kinematic Cuts $(H_t, Angular distributions)$

Lepton + Jets Channels

• Signature:

- One isolated high P_T lepton $(e \text{ or } \mu)$
- Missing Energy $(\cancel{\mathbb{E}}_{\mathtt{T}})$
- -4 or more jets, 2 of which are from b-quarks

• Dominant Backgrounds:

- $-p\bar{p} \rightarrow W + jets$
- QCD background (Fake leptons)

Reduction of Background:

- Cut on Event Shape:
 - Aplanarity (Planar (0) > A > Spherical (1/2))
 - $-\Sigma H_T = \Sigma E_T(Jets)$
 - Form Likelihood ($t\bar{t}$ vs. Back.) based on jet E_T 's
- Tag b-quarks using semileptonic Decay

$$b
ightarrow \mu X \quad (20\%), \qquad b
ightarrow e X \quad (20\%)$$

• Tag b-quarks by displaced vertex (CDF)

Summary of Lepton+Jets Events

Sample	DØ	$\overline{\text{CDF}}$
Event Shape:		
$\overline{\mathrm{Observed}}$	21	22
Background	9.2 ± 2.4	7.2 ± 2.1
Expected Yield	12.9 ± 2.1	_
$(M_{top}=175~{ m GeV/c^2})$		(Based on 67 pb^{-1})
$b \to \ell X$:		
Observed	11	40
Background	2.5 ± 0.4	24.3 ± 3.5
Expected Yield	5.2 ± 1.0	9.6 ± 1.7
$(M_{top}=175~{ m GeV/c^2})$		
Displaced Vertex:		
Observed	_	34
Background	-	8.0 ± 1.4
Expected Yield	_	19.8 ± 4.0
$M_{top} = 175 \text{ GeV/c}^2$		

All Hadronic Channel

• Signature:

- 6 or more jets, 2 of which are from b-quarks
- not all 6 jets are always observed

• Dominant Backgrounds:

- QCD multijet production

• Features:

- Signal-to-background is $\sim \frac{1}{30}$ before additional topological/kinematic requirements or b-tagging
- If background can be controlled, top mass determination possible (no neutrinos)

All Hadronic Event Summary

Sample	$\mathrm{D} \emptyset$	CDF
Observed	15	192
Background	11 ± 2	137.1 ± 11.3
Expected Yield	4.5 ± 0.5	26.6 ± 9.1
$(M_{top}=175~{ m GeV/c^2})$		

We have:

 $\approx 13 \text{ dileptons}$ $\approx 70 \text{ Lepton+Jets}$ $\approx 60 \text{ All Hadronic}$

Now what do we want to learn?

- Production Properties (e.g. $\sigma_{t\bar{t}}$)
- Decay Properties (e.g. V_{tb})
- Top Quark Mass (M_{top})

tt Cross Section Measurement

• This measurement is straight forward.

$$\sigma = \frac{N_{obs} - N_{bkg}}{A\mathcal{L}}$$

• The measurement can be made in each decay channel individually and compared with one another and to a theoretical prediction.

Width of theory band given by spread in Laenen et al, 2 Berger et al, Nason et al, and Catani et al, at 175 GeV/c²

CDF Measurement of V_{tb}

- Unitarity within a three-generation Standard Model implies $V_{tb} \sim 1.0$
- CDF has analyzed the l + jets and dilepton samples to:
 - Measure the ratio of events with 0, 1, and 2 b-tags
 - Use this to extract

$$b = \frac{Br(t \to Wb)}{Br(t \to WX)}$$

• By comparing ratios of these event yields, this result is independent of the value of $\sigma_{t\bar{t}}$ and $\frac{Br(W\to l\nu)}{Br(W\to q\bar{q})}$

Results of a maximum likelihood Combining all Information

$$\mathbf{b} = \frac{\mathbf{Br}(\mathbf{t} o \mathbf{Wb})}{\mathbf{Br}(\mathbf{t} o \mathbf{WX})} = \mathbf{0.94} \pm \mathbf{0.27}(\mathbf{stat}) \pm \mathbf{0.13}(\mathbf{syst})$$

$$b > 0.34 at 95\% c.l.$$

In a three-generation Standard Model,

$$b = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2}$$

Assuming 3-generation unitarity this yields:

$$|\mathbf{V_{tb}}| = 0.97 \pm 0.15 \pm 0.07$$

and

$$|\mathbf{V_{tb}}|~>0.58$$
 at 95% c.l.

Search for Rare Decays

• Search $t\bar{t}$ events for one top decaying in the standard fashion $(t \to Wb)$ and the other top quark decaying to a rare mode:

$$-t \rightarrow \gamma c$$
, $t \rightarrow \gamma u$ (BR $\approx 10^{-10}$)
 $-t \rightarrow Zc$
 $-t \rightarrow WZb$

- Expect nothing and limit will be not be a strong test of the standard model, but....
- A Preliminary search for $t \to \gamma \ q$ by CDF yields:

$$BF(t \rightarrow c\gamma) + BF(t \rightarrow u\gamma) < 2.9\% (95\%C.L.)$$

Measuring the Top Mass

- M_{top} is a standard model parameter.
- Most important measurement from this run.
- Goal: Determine M_{top}
 - as accurately as possible
 - using as many decay modes as possible
 - using several methods to cross check techniques, systematics, etc.
- Amazing amount of work by both experiments on exploring these issues.
- Measurements significantly improved since last papers (Feb 1995) and even since winter conferences.
 - $-\delta M_{top} (D\emptyset) \approx 2.5 \times \text{better}$
 - $-\delta M_{top} \ ({
 m CDF}) \approx 2 \times \ {
 m better}$

We've got it surrounded

L + Jets

- * Kinematic Reconstruction
- * Modified
 - -- Subsamples
 - -- Optimized
 - -- Adding additional constraints

Dilepton

* Likelihood (D0)

$$=> Mass = 158 + / - 26 GeV$$

$$* < M_{lb} > (CDF)$$

$$=>$$
 Mass = 162 +/- 22 GeV

$$* < E_T^b > (CDF)$$

=> Mass = 160 + /- 28 GeV

All Hadronic

- * Kinematic Reconstruction
- * Mass = 187 + /- 15 GeV (CDF)

Mass using Lepton+Jets Events

- Decay mode with most power
- Attempt to reconstruct the top quarks from the decay products.
- <u>Problem:</u> Events are $t\bar{t} + X$; naively we don't know how to assign the observed objects to the t and \bar{t}

- 24 Total Combinations (12 w/ 1 b-tag, 4 w/ 2 b-tag)
- Constraints: $M_{jj} = M_W$, $M_{top} = M_{antitop}$
- Pick best combination by forming a χ^2
 - Wrong combinations peak at M_{top}

- Power to extract M_{top} depends on S/B in the sample.
- DØ combines 4 kinematic variables into 1 discriminant D, which separates top from background. A fit in 2-dim. is performed to extract the best M_{top} .

DØ Mass Fit preliminary

2D fit to 32 events (LB sample) constrain signal by PR fit

$$m_{top} = 168 \pm 8(stat.), \ \chi^2 = 21.7/22$$

• CDF has good S/B with Displaced Vertex (SVX) tagging

- Recent optimization studies show dividing the lepton+jets into 4 independent samples yields the best result.
 - Each fit independently
 - Best mass found using the likelihood from each.

• Samples:

- 1. One Displaced b-tag
- 2. Two displaced b-tags
- 3. One or more $b \to \ell X$ (no displaced tag)
- 4. No b-tags (4 Jets w/ $E_T \ge 15$ GeV)

CDF Results

CDF Preliminary $M = 176.8 \pm 4.4 \text{ (stat.)} \pm 4.8 \text{ (syst.)} \text{ GeV/c}^2$

Tables of Systematics on the Lepton+Jets Sample

CDF L+Jet Mass Systematic	Value
	$ m GeV/c^2$
$\operatorname{Soft} \operatorname{Gluon} + \operatorname{Jet} \operatorname{E}_{\scriptscriptstyle{\mathrm{T}}} \operatorname{Scale}$	3.6
Different Generators	1.4
Hard Gluon Effects	2.2
Kinematic and Likelihood Fitting Methods	1.5
b-tagging Bias	0.4
Background Spectrum	0.7
Monte Carlo Statistics	0.8
Total	4.8

DØ L+Jet Mass Systematic	Value
	${ m GeV/c^2}$
Jet Energy Correction	± 7.3
Monte Carlo Model	± 3.3
Fitting Method	± 2.0
Total	8

Combining CDF and DØ Top Mass <u>Measurements</u>

• Used only Lepton+Jet Mass Measurements

$$-$$
 CDF: 176.8 \pm 4.4 \pm 4.8 GeV/c²

 $-D\emptyset: 169 \pm 8 \pm 8 \text{ GeV/c}^2$

• Assumptions:

- Made the conservative assumption that all the systematic errors, except energy scale, b-tagging bias and Monte Carlo statistics, are 100% correlated.
- Found the central value by weighting by the statistical error only.

• Results:

$$M_{top} = 175.0 \pm 3.9 \pm 4.5 \text{ GeV/c}^2$$

$$\mathbf{M_{top}} = \mathbf{175} \pm \mathbf{6} \ \mathbf{GeV/c^2}$$

Summary of Mass Measurements

$$M_{top}$$
 and M_W

• The top quark mass and the W boson mass can tell us something about the Higgs mass, if we can measure M_{top} and M_H precisely enough.

Need More Data!

Future Prospects Before LHC

- Tevatron Upgrades:
 - Main Injector Commissioning

$$-E_{cm}=2.0~{
m TeV}~(\sigma_{t\bar{t}}~40\%~{
m higher})$$

$$-\mathcal{L} = 2.0 \times 10^{32}$$

$$- IL = 2 \text{ fb}^{-1} \text{ (Factor 20 increase)}$$

- Detector Upgrades:
 - Enhance the efficiency to detect top decays (e.g. CDF/DØ Long Silicon Vertex Detectors)
- Estimate Yields: (per experiment)
 - Dileptons: 160

$$-L+Jets + \ge 1 \text{ b-tag: } 990$$

$$-L+Jets + \ge 2 \text{ b-tag: } 450$$

• Projected Results (See FERMILAB-PUB-96/082)

$$-\delta M_{top} = 1 - 2 \text{ GeV/c}^2$$

$$-\delta\sigma_{tar{t}}=9\%$$

- Study of single top production
- Polarization studies

Summary

• Top has been observed and $\sigma_{t\bar{t}}$ has been measured in many decay modes:

$$egin{aligned} \mathbf{t} \overline{\mathbf{t}} &
ightarrow \mathbf{W} + \mathbf{Jets} + \mathbf{X} \ \mathbf{t} \overline{\mathbf{t}} &
ightarrow \mathbf{W} + \mathbf{b} + \mathbf{Jets} + \mathbf{X} \ \mathbf{t} \overline{\mathbf{t}} &
ightarrow \mathbf{l}^+ \mathbf{l}^- + \mathbf{Jets} + \mathbf{X} \ \mathbf{t} \overline{\mathbf{t}} &
ightarrow \mathbf{l}^+ + au + \mathbf{Jets} + \mathbf{X} \ \mathbf{t} \overline{\mathbf{t}} &
ightarrow \mathbf{6} \ \mathbf{Jets} + \mathbf{X} \end{aligned}$$

• World Average Top Cross Section at 175 GeV/c^2 :

$$\sigma_{\mathbf{t}\overline{\mathbf{t}}} = \mathbf{6.4}^{+1.3}_{-1.2} \ \mathbf{pb}$$

QCD predictions range from 4.7 to 5.6 pb

• New Top mass results emphasize optimal use of information and are much more precise:

$$M_{Top} = 169 \pm 11~GeV/c^2$$
 DØ L+jets
 $M_{Top} = 176.8 \pm 6.5~GeV/c^2$ CDF L+jets
 $M_{Top} = 175 \pm 6~GeV/c^2$ CDF/DØ L+jets

Nothing observed in top production or decay is glaringly inconsistent with the Standard Model.